Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Hum Mol Genet ; 33(10): 919-929, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38339995

ABSTRACT

The clinical severity of sickle cell disease (SCD) is strongly influenced by the level of fetal haemoglobin (HbF) persistent in each patient. Three major HbF loci (BCL11A, HBS1L-MYB, and Xmn1-HBG2) have been reported, but a considerable hidden heritability remains. We conducted a genome-wide association study for HbF levels in 1006 Nigerian patients with SCD (HbSS/HbSß0), followed by a replication and meta-analysis exercise in four independent SCD cohorts (3,582 patients). To dissect association signals at the major loci, we performed stepwise conditional and haplotype association analyses and included public functional annotation datasets. Association signals were detected for BCL11A (lead SNP rs6706648, ß = -0.39, P = 4.96 × 10-34) and HBS1L-MYB (lead SNP rs61028892, ß = 0.73, P = 1.18 × 10-9), whereas the variant allele for Xmn1-HBG2 was found to be very rare. In addition, we detected three putative new trait-associated regions. Genetically, dissecting the two major loci BCL11A and HBS1L-MYB, we defined trait-increasing haplotypes (P < 0.0001) containing so far unidentified causal variants. At BCL11A, in addition to a haplotype harbouring the putative functional variant rs1427407-'T', we identified a second haplotype, tagged by the rs7565301-'A' allele, where a yet-to-be-discovered causal DNA variant may reside. Similarly, at HBS1L-MYB, one HbF-increasing haplotype contains the likely functional small indel rs66650371, and a second tagged by rs61028892-'C' is likely to harbour a presently unknown functional allele. Together, variants at BCL11A and HBS1L-MYB SNPs explained 24.1% of the trait variance. Our findings provide a path for further investigation of the causes of variable fetal haemoglobin persistence in sickle cell disease.


Subject(s)
Anemia, Sickle Cell , Fetal Hemoglobin , GTP-Binding Proteins , Genome-Wide Association Study , Haplotypes , Polymorphism, Single Nucleotide , Humans , Anemia, Sickle Cell/genetics , Anemia, Sickle Cell/blood , Fetal Hemoglobin/genetics , Nigeria , Polymorphism, Single Nucleotide/genetics , Female , Male , Adult , Repressor Proteins/genetics , Carrier Proteins/genetics , Alleles , Nuclear Proteins/genetics , Genetic Predisposition to Disease , Adolescent
2.
Transl Psychiatry ; 13(1): 121, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037832

ABSTRACT

Increasing lines of evidence suggest deviations from the normal early developmental trajectory could give rise to the onset of schizophrenia during adolescence and young adulthood, but few studies have investigated brain imaging changes associated with schizophrenia common variants in neonates. This study compared the brain volumes of both grey and white matter regions with schizophrenia polygenic risk scores (PRS) for 207 healthy term-born infants of European ancestry. Linear regression was used to estimate the relationship between PRS and brain volumes, with gestational age at birth, postmenstrual age at scan, ancestral principal components, sex and intracranial volumes as covariates. The schizophrenia PRS were negatively associated with the grey (ß = -0.08, p = 4.2 × 10-3) and white (ß = -0.13, p = 9.4 × 10-3) matter superior temporal gyrus volumes, white frontal lobe volume (ß = -0.09, p = 1.5 × 10-3) and the total white matter volume (ß = -0.062, p = 1.66 × 10-2). This result also remained robust when incorporating individuals of Asian ancestry. Explorative functional analysis of the schizophrenia risk variants associated with the right frontal lobe white matter volume found enrichment in neurodevelopmental pathways. This preliminary result suggests possible involvement of schizophrenia risk genes in early brain growth, and potential early life structural alterations long before the average age of onset of the disease.


Subject(s)
Connectome , Schizophrenia , Infant, Newborn , Adolescent , Humans , Infant , Young Adult , Adult , Cross-Sectional Studies , Schizophrenia/diagnostic imaging , Schizophrenia/genetics , Schizophrenia/metabolism , Magnetic Resonance Imaging/methods , Brain/metabolism
3.
Rare Tumors ; 14: 20363613221106270, 2022.
Article in English | MEDLINE | ID: mdl-35859616

ABSTRACT

Inflammatory myofibroblastic tumor (IMT) is an uncommon chest pathology. Treatment primarily focuses on surgical resection for diagnostic and therapeutic purposes. However, there are instances in which alternative therapies with steroids, chemotherapy, or radiation are necessary. We discuss a case of recurrent IMT for which very low dose radiation proved an effective treatment.

4.
Curr Protoc ; 2(4): e373, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35452565

ABSTRACT

The Illumina genotyping microarrays generate data in image format, which is processed by the platform-specific software GenomeStudio, followed by an array of complex bioinformatics analyses that rely on various software, different programming languages, and numerous dependencies to be installed and configured correctly. The entire process can be time-consuming, can lead to reproducibility errors, and can be a daunting task for bioinformaticians. To address this, we introduce the COPILOT protocol, which has been successfully used to transform raw Illumina genotype intensity data into high-quality analysis-ready data on tens of thousands of human patient samples that have been genotyped on a variety of Illumina genotyping arrays. This includes processing both mainstream and custom content genotyping chips with over 4 million markers per sample. The COPILOT QC protocol consists of two distinct tandem procedures to process raw Illumina genotyping data. The first protocol is an up-to-date process to systematically QC raw Illumina microarray genotyping data using the Illumina-specific GenomeStudio software. The second protocol takes the output from the first protocol and further processes the data through the COPILOT (Containerised wOrkflow for Processing ILlumina genOtyping daTa) containerized QC pipeline, to automate an array of complex bioinformatics analyses to improve data quality through a secondary clustering algorithm and to automatically identify typical Genome-Wide Association Study (GWAS) data issues, including gender discrepancies, heterozygosity outliers, related individuals, and population outliers, through ancestry estimation. The data is returned to the user in analysis-ready PLINK binary format and is accompanied by a comprehensive and interactive HTML summary report file which quickly helps the user understand the data and guides the user for further data analyses. The COPILOT protocol and containerized pipeline are also available at https://khp-informatics.github.io/COPILOT/index.html. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Processing raw Illumina genotyping data using GenomeStudio Basic Protocol 2: COPILOT: A containerised workflow for processing Illumina genotyping data.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Reproducibility of Results
5.
Blood Adv ; 6(11): 3535-3540, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35271708

ABSTRACT

Acute pain, the most prominent complication of sickle cell disease (SCD), results from vaso-occlusion triggered by sickling of deoxygenated red blood cells (RBCs). Concentration of 2,3-diphosphoglycerate (2,3-DPG) in RBCs promotes deoxygenation by preferentially binding to the low-affinity T conformation of HbS. 2,3-DPG is an intermediate substrate in the glycolytic pathway in which pyruvate kinase (gene PKLR, protein PKR) is a rate-limiting enzyme; variants in PKLR may affect PKR activity, 2,3-DPG levels in RBCs, RBC sickling, and acute pain episodes (APEs). We performed a candidate gene association study using 2 cohorts: 242 adult SCD-HbSS patients and 977 children with SCD-HbSS or SCD-HbSß0 thalassemia. Seven of 47 PKLR variants evaluated in the adult cohort were associated with hospitalization: intron 4, rs2071053; intron 2, rs8177970, rs116244351, rs114455416, rs12741350, rs3020781, and rs8177964. All 7 variants showed consistent effect directions in both cohorts and remained significant in weighted Fisher's meta-analyses of the adult and pediatric cohorts using P < .0071 as threshold to correct for multiple testing. Allele-specific expression analyses in an independent cohort of 52 SCD adults showed that the intronic variants are likely to influence APE by affecting expression of PKLR, although the causal variant and mechanism are not defined.


Subject(s)
Acute Pain , Anemia, Sickle Cell , Pyruvate Kinase , 2,3-Diphosphoglycerate/metabolism , Acute Pain/genetics , Acute Pain/metabolism , Adult , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/genetics , Child , Erythrocytes, Abnormal/metabolism , Hemoglobin, Sickle/metabolism , Humans , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism
6.
Brain Behav Immun Health ; 15: 100286, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34345870

ABSTRACT

Cell culture models are valuable tools to study biological mechanisms underlying health and disease in a controlled environment. Although their genotype influences their phenotype, subtle genetic variations in cell lines are rarely characterised and taken into account for in vitro studies. To investigate how the genetic makeup of a cell line might affect the cellular response to inflammation, we characterised the single nucleotide variants (SNPs) relevant to inflammation-related genes in an established hippocampal progenitor cell line (HPC0A07/03C) that is frequently used as an in vitro model for hippocampal neurogenesis (HN). SNPs were identified using a genotyping array, and genes associated with chronic inflammatory and neuroinflammatory response gene ontology terms were retrieved using the AmiGO application. SNPs associated with these genes were then extracted from the genotyping dataset, for which a literature search was conducted, yielding relevant research articles for a total of 17 SNPs. Of these variants, 10 were found to potentially affect hippocampal neurogenesis whereby a majority (n=7) is likely to reduce neurogenesis under inflammatory conditions. Taken together, the existing literature seems to suggest that all stages of hippocampal neurogenesis could be negatively affected due to the genetic makeup in HPC0A07/03C cells under inflammation. Additional experiments will be needed to validate these specific findings in a laboratory setting. However, this computational approach already confirms that in vitro studies in general should control for cell lines subtle genetic variations which could mask or exacerbate findings.

7.
Sci Rep ; 11(1): 6357, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33737684

ABSTRACT

The recent SARS-CoV-2 pandemic manifests itself as a mild respiratory tract infection in most individuals, leading to COVID-19 disease. However, in some infected individuals, this can progress to severe pneumonia and acute respiratory distress syndrome (ARDS), leading to multi-organ failure and death. This study explores the proteomic differences between mild, severe, and critical COVID-19 positive patients to further understand the disease progression, identify proteins associated with disease severity, and identify potential therapeutic targets. Blood protein profiling was performed on 59 COVID-19 mild (n = 26), severe (n = 9) or critical (n = 24) cases and 28 controls using the OLINK inflammation, autoimmune, cardiovascular and neurology panels. Differential expression analysis was performed within and between disease groups to generate nine different analyses. From the 368 proteins measured per individual, more than 75% were observed to be significantly perturbed in COVID-19 cases. Six proteins (IL6, CKAP4, Gal-9, IL-1ra, LILRB4 and PD-L1) were identified to be associated with disease severity. The results have been made readily available through an interactive web-based application for instant data exploration and visualization, and can be accessed at https://phidatalab-shiny.rosalind.kcl.ac.uk/COVID19/ . Our results demonstrate that dynamic changes in blood proteins associated with disease severity can potentially be used as early biomarkers to monitor disease severity in COVID-19 and serve as potential therapeutic targets.


Subject(s)
Biomarkers/blood , COVID-19/blood , Central Nervous System Diseases/virology , Proteome , Aged , COVID-19/complications , Case-Control Studies , Cohort Studies , Female , Gene Expression Profiling , Gliosis/virology , Humans , Male , Middle Aged , Nerve Tissue Proteins/blood
8.
Cureus ; 13(1): e12530, 2021 Jan 06.
Article in English | MEDLINE | ID: mdl-33564531

ABSTRACT

A 49-year-old male with a history of nonischemic heart failure with reduced ejection fraction, hypertension, diabetes was admitted for cardiogenic shock. Treatment started with a high dose of dobutamine infusion. While the patient's volume status improved, his clinical status declined as he became febrile and hypotensive. He was found to have severe dobutamine-induced eosinophilia, corrected only upon dobutamine cessation and steroid administration. A comprehensive investigation ruled out other potential etiologies. Peripheral eosinophilia is a rare adverse effect associated with dobutamine, leading to a significant deterioration in already decompensated patients.

9.
Respir Med Case Rep ; 32: 101321, 2021.
Article in English | MEDLINE | ID: mdl-33391989

ABSTRACT

Legionella most commonly presents as pneumonia but can have disseminated involvement, presenting as extra-pulmonary disease involving gastrointestinal, neurological, cardiac, renal, and musculoskeletal systems, and skin and soft tissues. We present a case of a patient with pneumonia, rhabdomyolysis, renal failure, hypertriglyceridemia, pancreatitis, and cutaneous involvement. This case highlights the breath of involvement legionella can have, including the never previously documented manifestation of hypertriglyceridemia and severe rhabdomyolysis with the highest creatinine kinase recorded.

11.
J Alzheimers Dis ; 74(2): 545-561, 2020.
Article in English | MEDLINE | ID: mdl-32065794

ABSTRACT

BACKGROUND: The typical approach to identify blood-derived gene expression signatures as a biomarker for Alzheimer's disease (AD) have relied on training classification models using AD and healthy controls only. This may inadvertently result in the identification of markers for general illness rather than being disease-specific. OBJECTIVE: Investigate whether incorporating additional related disorders in the classification model development process can lead to the discovery of an AD-specific gene expression signature. METHODS: Two types of XGBoost classification models were developed. The first used 160 AD and 127 healthy controls and the second used the same 160 AD with 6,318 upsampled mixed controls consisting of Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis, bipolar disorder, schizophrenia, coronary artery disease, rheumatoid arthritis, chronic obstructive pulmonary disease, and cognitively healthy subjects. Both classification models were evaluated in an independent cohort consisting of 127 AD and 687 mixed controls. RESULTS: The AD versus healthy control models resulted in an average 48.7% sensitivity (95% CI = 34.7-64.6), 41.9% specificity (95% CI = 26.8-54.3), 13.6% PPV (95% CI = 9.9-18.5), and 81.1% NPV (95% CI = 73.3-87.7). In contrast, the mixed control models resulted in an average of 40.8% sensitivity (95% CI = 27.5-52.0), 95.3% specificity (95% CI = 93.3-97.1), 61.4% PPV (95% CI = 53.8-69.6), and 89.7% NPV (95% CI = 87.8-91.4). CONCLUSIONS: This early work demonstrates the value of incorporating additional related disorders into the classification model developmental process, which can result in models with improved ability to distinguish AD from a heterogeneous aging population. However, further improvement to the sensitivity of the test is still required.


Subject(s)
Alzheimer Disease/blood , Alzheimer Disease/genetics , Databases, Genetic/trends , Protein Array Analysis/trends , Alzheimer Disease/diagnosis , Biomarkers/blood , Gene Expression , Humans , Protein Array Analysis/methods
12.
IDCases ; 18: e00652, 2019.
Article in English | MEDLINE | ID: mdl-31720223

ABSTRACT

Nocardiosis is an uncommon infection, however it needs to be included in the differential diagnosis, especially in immunocompromised hosts. Central nervous system (CNS) nocardiosis, in particular, is an even rarer entity with a higher mortality. This is a case of CNS Nocardia infection with an atypical presentation that was initially concerning for metastatic disease. In an immunocompromised patient with CNS findings, atypical infectious processes need to be considered. In a patient with concomitant pulmonary findings, an evaluation for Nocardia should be pursued as the lungs are the primary route of entry for this organism. Treatment typically involves a sulfonamide with secondary antibiotic agent, however a combination using meropenem has proved effective here.

13.
PLoS One ; 14(10): e0223246, 2019.
Article in English | MEDLINE | ID: mdl-31596875

ABSTRACT

BACKGROUND: Previous studies of radiological damage in rheumatoid arthritis (RA) have used candidate-gene approaches, or evaluated single genome-wide association studies (GWAS). We undertook the first meta-analysis of GWAS of RA radiological damage to: (1) identify novel genetic loci for this trait; and (2) test previously validated variants. METHODS: Seven GWAS (2,775 RA cases, of a range of ancestries) were combined in a meta-analysis. Radiological damage was assessed using modified Larsen scores, Sharp van Der Heijde scores, and erosive status. Single nucleotide polymophsim (SNP) associations with radiological damage were tested at a single time-point using regression models. Primary analyses included age and disease duration as covariates. Secondary analyses also included rheumatoid factor (RF). Meta-analyses were undertaken in trans-ethnic and European-only cases. RESULTS: In the trans-ethnic primary meta-analysis, one SNP (rs112112734) in close proximity to HLA-DRB1, and strong linkage disequilibrium with the shared-epitope, attained genome-wide significance (P = 4.2x10-8). In the secondary analysis (adjusting for RF) the association was less significant (P = 1.7x10-6). In both trans-ethnic primary and secondary meta-analyses 14 regions contained SNPs with associations reaching P<5x10-6; in the European primary and secondary analyses 13 and 10 regions contained SNPs reaching P<5x10-6, respectively. Of the previously validated SNPs for radiological progression, only rs660895 (tagging HLA-DRB1*04:01) attained significance (P = 1.6x10-5) and had a consistent direction of effect across GWAS. CONCLUSIONS: Our meta-analysis confirms the known association between the HLA-DRB1 shared epitope and RA radiological damage. The lack of replication of previously validated non-HLA markers highlights a requirement for further research to deliver clinically-useful prognostic genetic markers.


Subject(s)
Arthritis, Rheumatoid/diagnostic imaging , Arthritis, Rheumatoid/genetics , Genome-Wide Association Study , Aged , Aged, 80 and over , Cohort Studies , Ethnicity/genetics , Female , Humans , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics
14.
Genes Brain Behav ; 18(8): e12596, 2019 11.
Article in English | MEDLINE | ID: mdl-31264367

ABSTRACT

The disrupted-in-schizophrenia 1 (DISC1) protein has been implicated in a range of biological mechanisms underlying chronic mental disorders such as schizophrenia. Schizophrenia is associated with abnormal striatal dopamine signalling, and all antipsychotic drugs block striatal dopamine 2/3 receptors (D2/3 Rs). Importantly, the DISC1 protein directly interacts and forms a protein complex with the dopamine D2 receptor (D2 R) that inhibits agonist-induced D2 R internalisation. Moreover, animal studies have found large striatal increases in the proportion of D2 R receptors in a high affinity state (D2high R) in DISC1 rodent models. Here, we investigated the relationship between the three most common polymorphisms altering the amino-acid sequence of the DISC1 protein (Ser704Cys (rs821616), Leu607Phe (rs6675281) and Arg264Gln (rs3738401)) and striatal D2/3 R availability in 41 healthy human volunteers, using [11 C]-(+)-PHNO positron emission tomography. We found no association between DISC1 polymorphisms and D2/3 R availability in the striatum and D2 R availability in the caudate and putamen. Therefore, despite a direct interaction between DISC1 and the D2 R, none of its main functional polymorphisms impact striatal D2/3 R binding potential, suggesting DISC1 variants act through other mechanisms.


Subject(s)
Corpus Striatum/diagnostic imaging , Nerve Tissue Proteins/genetics , Polymorphism, Single Nucleotide , Receptors, Dopamine/metabolism , Adult , Corpus Striatum/metabolism , Female , Humans , Male , Oxazines/pharmacokinetics , Positron-Emission Tomography , Protein Binding , Radiopharmaceuticals/pharmacokinetics
15.
Brain Behav Immun ; 80: 644-656, 2019 08.
Article in English | MEDLINE | ID: mdl-31063847

ABSTRACT

Individuals with intact cognition and neuropathology consistent with Alzheimer's disease (AD) are referred to as asymptomatic AD (AsymAD). These individuals are highly likely to develop AD, yet transcriptomic changes in the brain which might reveal mechanisms for their AD vulnerability are currently unknown. Entorhinal cortex, frontal cortex, temporal cortex and cerebellum tissue from 27 control, 33 AsymAD and 52 AD human brains were microarray expression profiled. Differential expression analysis identified a significant increase of transcriptomic activity in the frontal cortex of AsymAD subjects, suggesting fundamental changes in AD may initially begin within the frontal cortex region prior to AD diagnosis. Co-expression analysis identified an overactivation of the brain "glutamate-glutamine cycle", and disturbances in the brain energy pathways in both AsymAD and AD subjects, while the connectivity of key hub genes in this network indicates a shift from an already increased cell proliferation in AsymAD subjects to stress response and removal of amyloidogenic proteins in AD subjects. This study provides new insight into the earliest biological changes occurring in the brain prior to the manifestation of clinical AD symptoms and provides new potential therapeutic targets for early disease intervention.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Gene Regulatory Networks/genetics , Aged , Aged, 80 and over , Astrocytes/metabolism , Brain/metabolism , Cognition/physiology , Disease Progression , Female , Frontal Lobe/metabolism , Gene Expression/genetics , Gene Expression Profiling/methods , Humans , Male , Mitochondria/genetics , Tissue Array Analysis/methods , Transcriptome/genetics
16.
Schizophr Res ; 209: 88-97, 2019 07.
Article in English | MEDLINE | ID: mdl-31113746

ABSTRACT

BACKGROUND: Psychosis is a condition influenced by an interaction of environmental and genetic factors. Gene expression studies can capture these interactions; however, studies are usually performed in patients who are in remission. This study uses blood of first episode psychosis patients, in order to characterise deregulated pathways associated with psychosis symptom dimensions. METHODS: Peripheral blood from 149 healthy controls and 131 first episode psychosis patients was profiled using Illumina HT-12 microarrays. A case/control differential expression analysis was performed, followed by correlation of gene expression with positive and negative syndrome scale (PANSS) scores. Enrichment analyses were performed on the associated gene lists. We test for pathway differences between first episode psychosis patients who qualify for a Schizophrenia diagnosis against those who do not. RESULTS: A total of 978 genes were differentially expressed and enriched for pathways associated to immune function and the mitochondria. Using PANSS scores we found that positive symptom severity was correlated with immune function, while negative symptoms correlated with mitochondrial pathways. CONCLUSIONS: Our results identified gene expression changes correlated with symptom severity and showed that key pathways are modulated by positive and negative symptom dimensions.


Subject(s)
Psychotic Disorders/genetics , Schizophrenia/genetics , Transcriptome , Adolescent , Adult , Affective Disorders, Psychotic/genetics , Affective Disorders, Psychotic/psychology , Bipolar Disorder/genetics , Bipolar Disorder/psychology , Case-Control Studies , Depressive Disorder/genetics , Depressive Disorder/psychology , Female , Gene Expression Profiling , Gene Ontology , Humans , Male , Oligonucleotide Array Sequence Analysis , Psychotic Disorders/psychology , RNA/blood , Schizophrenic Psychology , Severity of Illness Index , Young Adult
17.
J Alzheimers Dis ; 68(4): 1635-1656, 2019.
Article in English | MEDLINE | ID: mdl-30909231

ABSTRACT

BACKGROUND: Microarray technologies have identified imbalances in the expression of specific genes and biological pathways in Alzheimer's disease (AD) brains. However, there is a lack of reproducibility across individual AD studies, and many related neurodegenerative and mental health disorders exhibit similar perturbations. OBJECTIVE: Meta-analyze publicly available transcriptomic data from multiple brain-related disorders to identify robust transcriptomic changes specific to AD brains. METHODS: Twenty-two AD, eight schizophrenia, five bipolar disorder, four Huntington's disease, two major depressive disorder, and one Parkinson's disease dataset totaling 2,667 samples and mapping to four different brain regions (temporal lobe, frontal lobe, parietal lobe, and cerebellum) were analyzed. Differential expression analysis was performed independently in each dataset, followed by meta-analysis using a combining p-value method known as Adaptively Weighted with One-sided Correction. RESULTS: Meta-analysis identified 323, 435, 1,023, and 828 differentially expressed genes specific to the AD temporal lobe, frontal lobe, parietal lobe, and cerebellum brain regions, respectively. Seven of these genes were consistently perturbed across all AD brain regions with SPCS1 gene expression pattern replicating in RNA-Seq data. A further nineteen genes were perturbed specifically in AD brain regions affected by both plaques and tangles, suggesting possible involvement in AD neuropathology. In addition, biological pathways involved in the "metabolism of proteins" and viral components were significantly enriched across AD brains. CONCLUSION: This study identified transcriptomic changes specific to AD brains, which could make a significant contribution toward the understanding of AD disease mechanisms and may also provide new therapeutic targets.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Transcriptome , Alzheimer Disease/pathology , Brain/pathology , Female , Humans , Male
18.
Commun Biol ; 1: 163, 2018.
Article in English | MEDLINE | ID: mdl-30320231

ABSTRACT

Psychiatric disorders are thought to have a complex genetic pathology consisting of interplay of common and rare variation. Traditionally, pedigrees are used to shed light on the latter only, while here we discuss the application of polygenic risk scores to also highlight patterns of common genetic risk. We analyze polygenic risk scores for psychiatric disorders in a large pedigree (n ~ 260) in which 30% of family members suffer from major depressive disorder or bipolar disorder. Studying patterns of assortative mating and anticipation, it appears increased polygenic risk is contributed by affected individuals who married into the family, resulting in an increasing genetic risk over generations. This may explain the observation of anticipation in mood disorders, whereby onset is earlier and the severity increases over the generations of a family. Joint analyses of rare and common variation may be a powerful way to understand the familial genetics of psychiatric disorders.

19.
Transl Psychiatry ; 8(1): 174, 2018 08 31.
Article in English | MEDLINE | ID: mdl-30171181

ABSTRACT

In this study, we aimed to test if the schizophrenia (SCZ) polygenic risk score (PRS) was associated with clinical symptoms in (a) the first episode of psychosis pre-treatment (FEP), (b) at nine weeks after initiation of risperidone treatment (FEP-9W) and (c) with the response to risperidone. We performed a detailed clinical assessment of 60 FEP patients who were antipsychotic-naive and, again, after nine weeks of standardized treatment with risperidone. After blood collection and DNA isolation, the samples were genotyped using the Illumina PsychArrayChip and then imputed. To calculate PRS, we used the latest available GWAS summary statistics from the Psychiatric Genomics Consortium wave-2 SCZ group as a training set. We used Poisson regression to test association between PRS and clinical measurements correcting for the four principal components (genotyping). We considered a p-value < 0.0014 (Bonferroni correction) as significant. First, we verified that the schizophrenia PRS was also able to distinguish cases from controls in this south-eastern Brazilian sample, with a similar variance explained to that seen in Northern European populations. In addition, within-cases analyses, we found that PRS is significantly correlated with baseline (pre-treatment) symptoms, as measured by lower clinical global assessment of functioning (-GAF), higher depressive symptoms and higher scores on a derived excitement factor. After standardized treatment for nine weeks, the correlation with GAF and the excitement factor disappeared while depressive symptoms became negatively associated with PRS. We conclude that drug (and other treatments) may confound attempts to understand the aetiological influence on symptomatology of polygenic risk scores. These results highlight the importance of studying schizophrenia, and other disorders, pre-treatment to understand the relationship between polygenic risk and phenotypic features.


Subject(s)
Antipsychotic Agents/therapeutic use , Genetic Predisposition to Disease , Schizophrenia/drug therapy , Schizophrenia/genetics , Adolescent , Adult , Brazil , Case-Control Studies , Female , Humans , Longitudinal Studies , Male , Multifactorial Inheritance , Polymorphism, Single Nucleotide , Psychiatric Status Rating Scales , Risk Assessment , Risperidone/therapeutic use , Young Adult
20.
Eur Neuropsychopharmacol ; 28(8): 945-954, 2018 08.
Article in English | MEDLINE | ID: mdl-30135031

ABSTRACT

Cytochrome (CYP) P450 enzymes have a primary role in antidepressant metabolism and variants in these polymorphic genes are targets for pharmacogenetic investigation. This is the first meta-analysis to investigate how CYP2C19 polymorphisms predict citalopram/escitalopram efficacy and side effects. CYP2C19 metabolic phenotypes comprise poor metabolizers (PM), intermediate and intermediate+ metabolizers (IM; IM+), extensive and extensive+ metabolizers (EM [wild type]; EM+) and ultra-rapid metabolizers (UM) defined by the two most common CYP2C19 functional polymorphisms (rs4244285 and rs12248560) in Caucasians. These polymorphisms were genotyped or imputed from genome-wide data in four samples treated with citalopram or escitalopram (GENDEP, STAR*D, GenPod, PGRN-AMPS). Treatment efficacy was assessed by standardized percentage symptom improvement and by remission. Side effect data were available at weeks 2-4, 6 and 9 in three samples. A fixed-effects meta-analysis was performed using EM as the reference group. Analysis of 2558 patients for efficacy and 2037 patients for side effects showed that PMs had higher symptom improvement (SMD = 0.43, CI = 0.19-0.66) and higher remission rates (OR = 1.55, CI = 1.23-1.96) compared to EMs. At weeks 2-4, PMs showed higher risk of gastro-intestinal (OR = 1.26, CI = 1.08-1.47), neurological (OR = 1.28, CI = 1.07-1.53) and sexual side effects (OR = 1.52, CI = 1.23-1.87; week 6 values were similar). No difference was seen at week 9 or in total side effect burden. PMs did not have higher risk of dropout at week 4 compared to EMs. Antidepressant dose was not different among CYP2C19 groups. CYP2C19 polymorphisms may provide helpful information for guiding citalopram/escitalopram treatment, despite PMs being relatively rare among Caucasians (∼2%).


Subject(s)
Antidepressive Agents/adverse effects , Antidepressive Agents/therapeutic use , Cytochrome P-450 CYP2C19/genetics , Cytochrome P-450 CYP2C19/metabolism , Pharmacogenomic Variants , Citalopram/adverse effects , Citalopram/therapeutic use , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/genetics , Depressive Disorder, Major/metabolism , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...